
itom
A Measurement and Data Processing

Software Suite

2013-09-10 / 2013-09-11

What this tutorial is about

• Introduction about itom

− Why did we develop itom ?

− Main features

− Python and its most important modules

− itom ’s plugin system

• Show-Cases

− Macroscopic fringe projection

− Software-Plugin: GUI for GPU based ray tracer MacroSim

− Commercial confocal microscope from TWIP Optical Solutions

• Hands-on exercises

− We develop an example to calculate the offset between two images,
acquired with your webcam and create a user-developed GUI

2

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

4

Motivation

itom

• Fast, well-established, easy to use scripting
language (Python)

• Homogeneous hardware integration

• Automation of measurement systems

• Fast data processing and analysis

• Easy to customize

Matlab

Data processing

Extensive math libraries

Integration of hardware

User defined interface

Labview

Easy generation of GUIs

Excellent hardware support

Limited data processing and
analysis

No unified hardware interfaces

5

Requirements and Solutions

Requirements Solution

Fast, performant implementation C++

Modern, user-friendly interface, independent
of hardware platform

Qt-Framework (Windows,
Linux, Mac OS)

Fully integrated scripting language (fast,
robust, easy to learn, extensive existing
libraries, well documented and supported)

Python (Version 3) incl. numerous
libraries (numpy, scipy, scikit-
image, matplotlib, …)

Easy, flexible, homogenous integration of
hardware support (motors, cameras,
AD converter, ...) and algorithms

Plugin-System

Using well-known, time-proven, free software
libraries where possible

OpenCV, PointCloudLibrary,
Qscintilla, Qwt, …

6

itom

7
Windows 7

itom

8
Debian KDE

Windows 8

itom – main features

9

Scripting
- Integrated Python programming environment
- Almost full Python functionality
- Controlling itom by specific Python module

Plugins
- C++ libraries (e.g. dll)
- Hardware and algorithm integration
- Integration of complex dialogs and windows

GUI
- Intuitive
- Optimized for implementation of measurement systems
- Ability to integrate customized user interfaces

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

10

Python

• Open-Source scripting language (very liberal BSD-license)

• Implemented in C

• Developed and supported since 1991

• Supports object-oriented, functional and imperative programming
paradigms

• Version 3.2 or newer supported

• Fully integrated core component of itom

• Vast number of third-party modules available for free

• Scripts are precompiled and cached for faster execution

• Integrated Python-debugger

11

Python

• Variables have an Python internal type, mainly: int, float, complex

• Casting uses the functions int(), float()…

• Assignment: a=1 a,b=1,2

• Comparison operators: ==, >, <, <=, >=, !=

• Bitwise-Operators: &, |, ~, ^

• Basic arithmetic: a = a+1, a += 1, a=a**2

• Operators also work on many non-basic types (arrays, lists, dictionaries…)

int factorial(int x)

{

if (x > 1) {

return x * factorial(x-1);

} else {

return 1;

}

}

function ret = factorial(x)

if(x > 1)

ret = x * factorial(x-1);

else

ret = 1;

end

end

def factorial(x):

if (x > 1):

return x * factorial(x-1)

else:

return 1

12

Example: Factorial

Python - Packages

13

itom

• Python is embedded in itom
• itom can be controlled by Python via

itom-module
• Python is extendable by packages

Numpy
numeric library

Scipy
scientific library

Matplotlib
plots and graphs

scikit-image
image processing

tools

„The bridge between Python and itom“
>> from itom import * <<

Python -Module itom

14

• Add menus and toolbars to itom GUI and
connect them with Python methods

• Plots arrays/matrices and camera live images

• Control hardware plugins (dataIO, actuator)

• Call algorithms from software plugins

• Online help for plugins

• Build GUIs at runtime with WYSIWYG design tool

• Connect widget’s signals to python methods

• Change properties of widgets by script commands

Numpy

15

Numeric package

• Support of large, multi-dimensional arrays

• Large library of mathematical functions and
operators

• itom ’s own array object is compatible to
Numpy arrays.

• Array creating and
manipulation

• Binary operations
• Linear algebra
• Masked arrays
• Polynomials
• Random Sampling
• Sorting, Searching,

Counting
• Fourier Transforms
• …from numpy import *

from numpy.linalg import solve

The system of equations we want to solve for (x0,x1,x2):

3 * x0 + 1 * x1 + 5 * x2 = 6

1 * x0 + 8 * x2 = 7

2 * x0 + 1 * x1 + 4 * x2 = 8

a = array([[3,1,5],[1,0,8],[2,1,4]])

b = array([6,7,8])

x = solve(a,b)

print(x) # This is our solution

[-3.28571429 9.42857143 1.28571429]

Example: Solve Ax=b

Scipy

16

Scientific Algorithms

• Extension for numpy

• Provide more functions from the field of
numeric, statistic and optimization

• Itself extendable by scikits

• Optimization
• Linear Algebra
• Integration
• Interpolation
• FFT
• Signal Processing
• ODE Solvers
• Optimization
• Basic image processing
• Sparse Matrices

import numpy as np

from scipy.optimize import root

def func(x):

return x + 2 * np.cos(x)

sol = np.root(func, 0.3)

sol.x

>>> array([-1.02986653])

sol.fun

>>> array([-6.66133815e-16])

Example:
Find root of � � 2��� � � 0 around � � 0.3

Matplotlib

Plotting package

• Python package for math plots

• Based on numpy

• Syntax close to Matlab

• Export in various image formats:
png, pdf, eps…

• Fully integrated in itom

• Can be integrated in custom GUIs

17

scikit-image

Image processing package

• Based on Numpy arrays

• Algorithms written in Python and C

• Uses Matplotlib for plotting results

18

• Segmentation
• Transformation
• Morphology
• Measure
• IO
• Image filtering
• Rank filters
• Feature detection

Example: Entropy determination

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

19

itom Plugin System

Plugins extend the basic functionalities of itom . Each plugin is a
C++ library (.dll, .so)

Every Plugin implements one of three basic interface classes
(DataIO, Actuator, Algorithm)

Plugins (e.g. camera, motor stages…) can be instantiated from
Python or directly through the itom GUI

20

• Cameras
• A/D-Converters
• Serial Bus

• Motors
• Multi-Axes

Machines

• Algorithms
• Data Filters
• Complex GUIs

DataIO Actuator Algorithm

Interface “dataIO + Grabber”

Primary functionality

• getParam(..) � read a parameter

• setParam(..) � set a parameter

• startDevice() � start camera

• stopDevice() � stop camera

• acquire() � take a picture

• getVal(..) / copyVal(..) � load
image from camera into
itom/Python

• …

Live images from the camera can be displayed in separate windows or
integrated into custom GUIs

21

Interface “actuator”

Primary Functionality

• getParam(..) � read Parameter

• setParam(..) � set Parameter

• getStatus(..) � get status per axis

• getPos(..) � read current position

• setPosAbs/Rel() � move to position

• …

Signals about position and status of the actuator can be linked to and
processed by the GUI.

22

Interface “algo ”

‚Algo‘ plugins define

• Numerical algorithms

• GUI elements

Call:

• From a Python script

• By other plugins

Each method is defined by :

• Mandatory parameters (Type,
description…)

• Optional parameters

• Return values

23

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

24

GUI

25

GUI – Command Line

• Input/Output window for Python (Information, Warnings, Error)

• Direct execution of Python commands

• Functionality very similar to Matlab

• Auto completion of commands

• Syntax help and highlighting
26

GUI - Workspace

• Global Variables: contains all globally defined variables

• Local Variables: all local variables within a function (Debug only)

• Direct import and export to / from the Python workspace

27

GUI – File System

• Access and administration of all scripts
and files that can be opened in itom

• The default main directory is the current
working directory (similar to Matlab)

• Double click on a .py Python script will
open it in the scripting window

• Double click on supported file types will
load them into workspace

28

GUI – Plugins

• List of all available Plugins

• Sorted by category

• Allows direct instantiation of hardware
plugins

29

Scripting window

• Editor for Python scripts

• Syntax help and highlighting

• Auto completion

• Standard editor functionality

• Tabbing of multiple scripts

• Dockable into the main GUI

• Executes Scripts

• Full debugging functionality

30

Syntax Help and Auto Completion

• Auto completion
(selection item with tab-key)

31

• Syntax help

Set various syntax-files (for
important Python modules)
in itom’s property editor in
order to enable these
features.

Plots

• 1D, 2D, 2.5D plots

• Custom windows can be implemented

• Displayed in

− A separate window

− Docked into the main GUI

− Integrated into a custom GUI

dependent 1D-line plot

32

Custom GUIs (Qt Designer)

• Design of custom GUIs in the external Qt Designer
WYSIWYG tool (drag&drop).

• Events created by the GUI (button click) can be
linked to Python functions

Preview

Library of
elements

Elements custom
GUI:
• Hierarchy
• Layouts

Properties of each
element:
Can be adapted by
Python scripts in
itomitom Designer-

Plugins 33

Custom GUIs (Qt Designer)

34

Dialog design with Qt Designer:

gui.btnOk[“text”] = “OK”

gui.comboOs.call(“addItems”, [“Windows”,”Linux”])

Dialog: gui

Script logic with python:
1. Access properties

def clickMe():

print(“operating system”, gui.comboOs[“currentText”])

gui.btnOk.connect(“clicked()”, clickMe)

2. Connect signals with
Python methods

Multithreading

Main Thread

All GUI Elements
• Main Window
• Scripting

Window
• Plots

Script Organizer

UI Organizer

Plugin Organizer

…

Python Thread

Python Interpreter

Python Debugger

Plugin Thread

Each plugin runs
in its own,

separate thread.
The corresponding
GUI elements are

pushed to the
main thread.

Asynchronous
Communication

using Qt-
Signal/Slots

35

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

36

License

• itom (main application) is “Open Source” (LGPL)

• itom -SDK (resources common to the main application and plugins)
are distributed under the LGPL-licence + itom -exception . The itom
exception allow the inclusion and linking of additional components
independent of those components licensing against all data included
in the SDK.

• Plugins can be subject to any (including proprietary) licenses. The
ITO offers a number of generic plugins under the LGPL .

• Designer-Plugins (plots…), similarly, can be subject
to any licenses.

37

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

38

Data Object

Goal:

• Different basic types of data (including complex)

• Processing of large, multi-dimensional data sets (series of images)

• Compatible with Matlab, Numpy, OpenCV

Implementation:

• DataObject very similar to OpenCV data structures

• Basic data types supported: int8, uint8, int16, uint16, int32, uint32, float,

double, complex(float), complex(double)

• DataObject supports tags (axes units, descriptions, title…)

39

Data Storage

3D data stack

Plane 0

Plane 1

Plane 2

40

Series of 2D-images

Data Storage

Assume: Series of 2D-images (3 x 2 x 5)

(0,0,0)

(2,1,4)(2,1,0)

Plane 0
Plane 1
Plane 2

C / Matlab: continuous chunk of memory

Plane 0

(0,0,0)

Plane 1 Plane 2

(1,0,0) (2,1,4)(0,1,0)

41

+ Uniform, quick and easy access to multi-dimensional arrays
– Memory allocation error for „big“ arrays

Data Storage

42

+ Less allocation errors due to distributed chunks of memory
– Slightly more complex access to memory

DataObject:

Plane 0

Plane 1

Plane 2

0

1

2

(0,0,0)

(1,0,0)

(0,1,0)

(2,1,4)

Plane 0

(0,0,0)

Plane 1 Plane 2

(1,0,0) (2,1,4)(0,1,0)

0 1 2

DataObject (continuous): Compatibility to C-style arrays

Agenda

• Motivation. Why itom ?

• Features

• Script Language Python

• Modular Plugin System

• The Graphical User Interface

• Licensing

• DataObject – itom ’s Built-in Array Class

• Documentation and Help

43

User Documentation

• User documentation displayed with Qt Assistant

• Can be exported to pdf, html…

Help pages

• Table of content
• Search
• Bookmarks

44

itom.bitbucket.org/latest/docs

Additional User Help within Python
1. Syntax help and auto completion in

the Python editor

2. Customizable, context sensitive
syntax highlighting

3. Python-internal help system using the
command help(…)

4. Additional information and help about
available plugins or algorithms using
the commands
pluginHelp(…),
filterHelp(…),
widgetHelp(…)

45

itom

Questions?

46

itom
Show Cases

Show -Case I: Fringe Projection

Situation

48

A flexible fringe projection setup
(structured light) for student
projects and public presentation is
been developed

� Provide a GUI for such a system
to demonstrate the function

� Allow students to run batch
processes for system
characterization

� Provide flexibility to change between several
evaluation or calibration methods and hardware
components.

Objective

Show -Case I: Triangulation

49

∆z

B

H ∆x

object

camera
chip

Laser

camera lens

Show -Case I: Structured Illumination

50

LCOS-Display or
DMD-Projector

Cosine-fringes (mod 2PI)
G

re
y-

C
od

e
�

ab
so

lu
te

 c
od

in
g

Show -Case I: Basic Set-up

51

Projector

Camera + lens

Show -Case II: MacroSim

Situation

52

� An open source GPU based ray-tracing tool has been
developed at ITO

� The native tool is command-line based

� Provide a GUI for MacroSim in order to simplify the
creation of new scenes and execute simulations

� For the future it should be possible to run both the real
setup and its corresponding simulation with the same tool.

Objective

Show -Case II: MacroSim

Solution

53

� Create an itom software plugin that provides its own GUI
and communicates with the tool MacroSim

itom
MacroSim

Plugin

MacroSim
Tracer

� MacroSim can use functionalities contained in itom

� Tracer can also be started by Python

� Batch execution possible using appropriate Python script

� Results of tracer are available in itom

Raytracing: A versatile tool

Raytracing is perfectly linear

54

→ Raytracing is perfectly parallelizable

Modell adaptiert von US Patent Publication US 6522484 B1, K-H
Schuster, Carl-Zeiss-Stiftung, (1999)

Parallelization of Raytracing

56

� GPU-Parallelization

- Restriction to Thread Coherence

- Specific Implementation

- Standard GPUs come with 200-500 cores

� CPU-Parallelization

- very flexible

- straightforward implementation

- More than 4 cores quickly become expensive

Images taken from CUDA programming guide 3.2

Parallelization of Raytracing

57

� GPU accelerated Tool: MacroSim

- Based on nVidia® OptiX™ acceleration engine

- Plugin to ITOs itom software

- imports glass catalog from Zemax®

- Published under GPL at https://bitbucket.org/itom/macrosim

- „An open source GPU-accelerated ray tracer for optical simulation“,
submitted for publication to Optical Engineering.

� GPU-Parallelization

- Restriction to Thread Coherence

- Specific Implementation

- Standard GPUs come with 200-500 cores

Images taken from CUDA programming guide 3.2

Parallelization of Raytracing

58

MacroSim Plugins contains one GUI and
some callable functions

Interaction with itom

59

GUI based

• Start MacroSim GUI by Python command (createNewPluginWidget)

• Start simulation manually

• GUI emits a signal with the final detector matrix (dataObject)

• Connect a Python function to this signal (called when simulation done)

Script based

• Optional: Start MacroSim GUI and create scene (XML-file)

• Call function runSimulation of MacroSim plugin and pass XML-file
(simulation is executed)

• The function finally returns the detector matrix as dataObject

Show -Case III: Confocal Microscopy

60

Show -Case III: Confocal Microscopy

Situation

61

� A confocal microscope is being developed by Twip Os
(spin-off of ITO)

� itom should be used to…

− control the measurement process

− provide a user-friendly control panel

− visualize the results

− provide functionality for data evaluation (roughness,
alignment, geometrical fitting…)

Objective

Show -Case III: Confocal Microscopy

62
Point Detector

Object

FWHM ~ 1/NA

Show -Case III: Confocal Microscopy

63

Point Detector

Object

Show -Case III: Confocal Microscopy

64

GUI

