.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "11_demos\python_packages\scikit-learn\demo_kMeansClustering.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_11_demos_python_packages_scikit-learn_demo_kMeansClustering.py: K-Means clustering ===================== An example of ``scikit-learn``, copied from `scikit-learn.org `_. .. GENERATED FROM PYTHON SOURCE LINES 7-37 .. image-sg:: /11_demos/python_packages/scikit-learn/images/sphx_glr_demo_kMeansClustering_001.png :alt: K-Means++ Initialization :srcset: /11_demos/python_packages/scikit-learn/images/sphx_glr_demo_kMeansClustering_001.png :class: sphx-glr-single-img .. code-block:: Python from sklearn.cluster import kmeans_plusplus from sklearn.datasets import make_blobs import matplotlib.pyplot as plt # Generate sample data n_samples = 4000 n_components = 4 X, y_true = make_blobs( n_samples=n_samples, centers=n_components, cluster_std=0.60, random_state=0 ) X = X[:, ::-1] # Calculate seeds from kmeans++ centers_init, indices = kmeans_plusplus(X, n_clusters=4, random_state=0) # Plot init seeds along side sample data plt.figure(1) colors = ["#4EACC5", "#FF9C34", "#4E9A06", "m"] for k, col in enumerate(colors): cluster_data = y_true == k plt.scatter(X[cluster_data, 0], X[cluster_data, 1], c=col, marker=".", s=10) plt.scatter(centers_init[:, 0], centers_init[:, 1], c="b", s=50) plt.title("K-Means++ Initialization") plt.xticks([]) plt.yticks([]) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 6.255 seconds) .. _sphx_glr_download_11_demos_python_packages_scikit-learn_demo_kMeansClustering.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: demo_kMeansClustering.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: demo_kMeansClustering.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: demo_kMeansClustering.zip `