12.3.10.4.4. Getting data in/out#

import pandas as pd
import numpy as np


timestamps = pd.Series(
    np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)
)
timestamps = timestamps.cumsum()
dataFrame = pd.DataFrame(
    np.random.randn(1000, 4), index=timestamps.index, columns=["A", "B", "C", "D"]
)
dataFrame = dataFrame.cumsum()

dataFrame.to_csv("foo.csv")
pd.read_csv("foo.csv")
Unnamed: 0 A B C D
0 2000-01-01 -0.791861 -0.558487 0.260862 -0.827079
1 2000-01-02 -0.728893 0.018522 0.491820 0.427598
2 2000-01-03 0.801129 -0.788797 0.187535 0.424554
3 2000-01-04 0.003962 -1.998664 -0.078471 1.017862
4 2000-01-05 0.529178 -1.765030 -0.781073 1.237441
... ... ... ... ... ...
995 2002-09-22 22.183364 -29.935107 -32.450743 19.144473
996 2002-09-23 21.568148 -30.342366 -32.678239 19.158621
997 2002-09-24 22.086591 -28.859693 -32.059223 18.354344
998 2002-09-25 22.520814 -29.239886 -30.950673 18.254176
999 2002-09-26 24.098983 -29.360780 -29.249539 18.458504

1000 rows × 5 columns



dataFrame.to_excel("foo.xlsx", sheet_name="Sheet1")
pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"])
Unnamed: 0 A B C D
0 2000-01-01 -0.791861 -0.558487 0.260862 -0.827079
1 2000-01-02 -0.728893 0.018522 0.491820 0.427598
2 2000-01-03 0.801129 -0.788797 0.187535 0.424554
3 2000-01-04 0.003962 -1.998664 -0.078471 1.017862
4 2000-01-05 0.529178 -1.765030 -0.781073 1.237441
... ... ... ... ... ...
995 2002-09-22 22.183364 -29.935107 -32.450743 19.144473
996 2002-09-23 21.568148 -30.342366 -32.678239 19.158621
997 2002-09-24 22.086591 -28.859693 -32.059223 18.354344
998 2002-09-25 22.520814 -29.239886 -30.950673 18.254176
999 2002-09-26 24.098983 -29.360780 -29.249539 18.458504

1000 rows × 5 columns



Total running time of the script: (0 minutes 1.071 seconds)